Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Lasers Surg Med ; 55(1): 116-125, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598082

RESUMO

OBJECTIVES: Cryolipolysis uses tissue cooling to solidify lipids, preferentially damaging lipid-rich cells. Topical cooling is popular for the reduction of local subcutaneous fat. Injection of biocompatible ice-slurry is a recently introduced alternative. We developed and verified a quantitative model that simulates the heat exchange and phase changes involved, offering insights into ice-slurry injection for treating subcutaneous fat. METHODS: Finite element method was used to model the spatial and temporal progression of heat transfer between adipose tissue and injected ice-slurry, estimating dose-response relationships between properties of the slurry and size of tissue affected by cryolipolysis. Phase changes of both slurry and adipose tissue lipids were considered. An in vivo swine model was used to validate the numerical solutions. Oils with different lipid compositions were exposed to ice-slurry in vitro to evaluate the effects of lipid freezing temperature. Microscopy and nuclear magnetic resonance (NMR) were performed to detect lipid phase changes. RESULTS: A ball of granular ice was deposited at the injection site in subcutaneous fat. Total injected ice content determines both the effective cooling region of tissue, and the duration of tissue cooling. Water's high latent heat of fusion enables tissue cooling long after slurry injection. Slurry temperature affects the rate of tissue cooling. In swine, when 30 ml slurry injection at -3.5°C was compared to 15 ml slurry injection at -4.8°C (both with the same total ice content), the latter led to almost twice faster tissue cooling. NMR showed a large decrease in diffusion upon lipid crystallization; saturated lipids with higher freezing temperatures were more susceptible to solidification after ice-slurry injection. CONCLUSIONS: Total injected ice content determines both the volume of tissue treated by cryolipolysis and the cooling duration after slurry injection, while slurry temperature affects the cooling rate. Lipid saturation, which varies with diet and anatomic location, also has an important influence.


Assuntos
Temperatura Corporal , Gelo , Suínos , Animais , Temperatura , Tecido Adiposo , Temperatura Alta
2.
JID Innov ; 1(3): 100032, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34909729

RESUMO

Cellulitis is frequently misdiagnosed owing to its clinical mimickers, collectively known as pseudocellulitis. This study investigated diffuse reflectance spectroscopy (DRS) alone and in combination with infrared thermography (IRT) for the differentiation of cellulitis from pseudocellulitis. A prospective cohort study at an urban academic hospital was conducted from March 2017 to March 2018. Patients presenting to the emergency department with presumed cellulitis were screened for eligibility, and 30 adult patients were enrolled. Dermatology consultation conferred a final diagnosis of cellulitis or pseudocellulitis. DRS measurements yielded a spectral ratio between 556 nm (deoxyhemoglobin peak) and 542 nm (oxyhemoglobin peak), and IRT measurements yielded temperature differentials between the affected and unaffected skin. Of the 30 enrolled patients, 30% were diagnosed with pseudocellulitis. DRS revealed higher spectral ratios in patients with cellulitis (P = 0.005). A single parameter model using logistic regression on DRS measurements alone demonstrated a classification accuracy of 77.0%. A dual parameter model using linear discriminant analysis on DRS and IRT measurements combined demonstrated a 95.2% sensitivity, 77.8% specificity, and 90.0% accuracy for cellulitis prediction. DRS and IRT combined diagnoses cellulitis with an accuracy of 90%. DRS and IRT are inexpensive and noninvasive, and their use may reduce cellulitis misdiagnosis.

3.
Lasers Surg Med ; 53(9): 1279-1293, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33998008

RESUMO

BACKGROUND AND OBJECTIVES: Photobiomodulation (PBM) therapy uses light at various wavelengths to stimulate wound healing, grow hair, relieve pain, and more-but there is no consensus about optimal wavelengths or dosimetry. PBM therapy works through putative, wavelength-dependent mechanisms including direct stimulation of mitochondrial respiration, and/or activation of transmembrane signaling channels by changes in water activity. A common wavelength used in the visible red spectrum is ~660 nm, whereas recently ~980 nm is being explored and both have been proposed to work via different mechanisms. We aimed to gain more insight into identifying treatment parameters and the putative mechanisms involved. STUDY DESIGN/MATERIALS AND METHODS: Fluence-response curves were measured in cultured keratinocytes and fibroblasts exposed to 660 or 980 nm from LED sources. Metabolic activity was assessed using the MTT assay for reductases. ATP production, a major event triggered by PBM therapy, was assessed using a luminescence assay. To measure the role of mitochondria, we used an ELISA to measure COX-1 and SDH-A protein levels. The respective contributions of cytochrome c oxidase and ATP synthase to the PBM effects were gauged using specific inhibitors. RESULTS: Keratinocytes and fibroblasts responded differently to exposures at 660 nm (red) and 980 nm (NIR). Although 980 nm required much lower fluence for cell stimulation, the resulting increase in ATP levels was short-term, whereas 660 nm stimulation elevated ATP levels for at least 24 hours. COX-1 protein levels were increased following 660 nm treatment but were unaffected by 980 nm. In fibroblasts, SDH-A levels were affected by both wavelengths, whereas in keratinocytes only 660 nm light impacted SDH-A levels. Inhibition of ATP synthase nearly completely abolished the effects of both wavelengths on ATP synthesis. Interestingly, inhibiting cytochrome c oxidase did not prevent the rise in ATP levels in response to PBM treatment. CONCLUSION: To the best of our knowledge, this is the first demonstration of differing kinetics in response to PBM therapy at red versus NIR wavelength. We also found cell-type-specific differences in PBM therapy response to the two wavelengths studied. These findings confirm that different response pathways are involved after 660 and 980 nm exposures and suggest that 660 nm causes a more durable response. © 2021 Wiley Periodicals LLC.


Assuntos
Terapia com Luz de Baixa Intensidade , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Mitocôndrias , Cicatrização
4.
Arch Dermatol Res ; 313(7): 599-602, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32761381

RESUMO

Clinicians play a critical role in recognizing, initiating, and adopting innovative solutions to clinical problems. Increasing clinician involvement in problem-based innovation will help identify and solve unmet medical needs. The overall objective of our program was to increase clinician involvement in problem-based innovation. We pioneered and piloted the "Magic Wand" Initiative (MWI) at Massachusetts General Hospital Department of Dermatology, by inviting clinical faculty to voluntarily participate in problem-driven innovation. The primary outcome was the number of unmet clinical needs identified and pursued by clinicians, who were 'activated' to initiate problem-based innovation. Other objectives were to enhance clinician-to-clinician dialogue and to develop specific strategic framework for clinician-led, problem-driven research. This pilot MWI was started in 2013 with an announcement at dermatology faculty meeting inviting all clinical faculty to participate on volunteer basis. Academic dermatologists were the main participants in this program. They also contacted, collaborated and worked with research faculty, industry experts and lawyers. Out of 30 unmet needs identified by clinicians participating in MWI, eight are actively being pursued by clinicians. Three of those cases presented here have achieved publications, grant funding, prototype devices and product for patient use. In conclusion, MWI is an innovative approach that educates and equips clinician to identify and solve problems and engages them as leaders in their healthcare ecosystem. MWI has achieved concrete measurable success, affirming that if clinicians are empowered and supported to identify and solve existing unmet medical problems, new and innovative solutions can be invented to improve patient care.


Assuntos
Pesquisa Biomédica/organização & administração , Tecnologia Biomédica/organização & administração , Criatividade , Dermatologistas/organização & administração , Melhoria de Qualidade , Dermatologistas/psicologia , Docentes/organização & administração , Humanos , Projetos Piloto
5.
Lasers Surg Med ; 50(1): 64-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058788

RESUMO

BACKGROUND AND OBJECTIVE: Ablative fractional laser treatment uses thousands of very small laser beam wounds to damage a fraction of the skin, which stimulates tissue remodeling. Each open micro-wound heals without scarring, but the amount of skin tightening achieved is limited. This animal study was performed to test the hypothesis that immediate temporary closure of fractional laser wounds could increase skin tightening after fractional ablative laser treatment. MATERIALS AND METHODS: Four adult swine were used for the study; 98 square test sites (3 × 3 cm) were tattooed on the abdomen and flanks of each pig. An ablative fractional Erbium:YAG laser (Sciton Profile, Sciton Inc, Palo Alto, CA) was used to treat the test areas. A laser micro-spot fluence of 375 J/cm2 was delivered in 150-250 microseconds pulses, resulting in an array of ablation channels extending 1.5 mm deep into the skin, with a spot size of 250 µm, with 10% treatment density. Immediately following laser exposure the resulting holes were closed using a stretched elastic adhesive dressing, which, when applied, recoiled and compressed the diameter of the ablation holes. The compressive dressings were removed after 7 days. This procedure was compared to removing the same amount of skin (10%) mechanically by specially designed 19 gauge coring needles, as well as to the same laser and coring methods without compression closure. Area and shape of test sites were measured by digital photography before and 28 days after treatment. Data analysis included compensation for animal growth, as measured by increase in the area of the untreated control sites. RESULTS: All treated and control sites healed within a week, without scarring evident at 28 days. Laser treatment combined with compressive wound closure caused significant shrinkage at 28 days compared with untreated control sites. The treated skin area was reduced by 11.5% (P = 0.0001). Needle coring with wound closure produced similar, significant shrinkage (8%, P < 0.0021), whereas laser and needle coring treatment without closure did not result in significant area reduction (P = 0.1289) compared with untreated control sites. CONCLUSION: Significant skin tightening can be achieved by immediate temporary non-invasive wound closure after short pulse Er:YAG fractional ablative laser treatment, as well as after mechanically removing skin with a coring needle. This approach may improve skin tightening after ablative laser treatments. Further clinical studies are necessary to confirm successful application in humans. Lasers Surg. Med. 50:64-69, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Terapia a Laser/métodos , Lasers de Estado Sólido/uso terapêutico , Envelhecimento da Pele/efeitos da radiação , Cicatrização/efeitos da radiação , Animais , Feminino , Envelhecimento da Pele/patologia , Suínos
6.
Shock ; 47(6): 735-742, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27861257

RESUMO

BACKGROUND: Carbon monoxide (CO) poisoning is a common cause of poison-related mortality. CO binds to hemoglobin in the blood to form carboxyhemoglobin (COHb), impairing oxygen delivery to peripheral tissues. Current treatment of CO-poisoned patients involves oxygen administration to rapidly remove CO and restore oxygen delivery. Light dissociates CO from COHb with high efficiency. Exposure of murine lungs to visible laser-generated light improved the CO elimination rate in vivo. The aims of this study were to apply pulmonary phototherapy to a larger animal model of CO poisoning, to test novel approaches to light delivery, and to examine the effect of chemiluminescence-generated light on the CO elimination rate. METHODS: Anesthetized and mechanically ventilated rats were poisoned with CO and subsequently treated with air or oxygen combined with or without pulmonary phototherapy delivered directly to the lungs of animals at thoracotomy, via intrapleural optical fibers or generated by a chemiluminescent reaction. RESULTS: Direct pulmonary phototherapy dissociated CO from COHb reducing COHb half-life by 38%. Early treatment with phototherapy in critically CO poisoned rats improved lactate clearance. Light delivered to the lungs of rats via intrapleural optical fibers increased the rate of CO elimination without requiring a thoracotomy, as demonstrated by a 16% reduction in COHb half-life. Light generated in the pleural spaces by a chemiluminescent reaction increased the rate of CO elimination in rats breathing oxygen, reducing the COHb half-life by 12%. CONCLUSIONS: Successful application of pulmonary phototherapy in larger animals and humans may represent a significant advance in the treatment of CO-poisoned patients.


Assuntos
Intoxicação por Monóxido de Carbono/terapia , Fototerapia/métodos , Androstanóis/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Temperatura Corporal , Monóxido de Carbono/toxicidade , Artérias Carótidas/efeitos dos fármacos , Modelos Animais de Doenças , Fentanila/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hemoglobinas/metabolismo , Injeções Intraperitoneais , Ketamina/farmacologia , Luminescência , Masculino , Ratos , Ratos Sprague-Dawley , Rocurônio , Traqueotomia
7.
Lasers Surg Med ; 48(7): 678-85, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27075645

RESUMO

BACKGROUND AND OBJECTIVE: Molecules native to tissue that fluoresce upon light excitation can serve as reporters of cellular activity and protein structure. In skin, the fluorescence ascribed to tryptophan is a marker of cellular proliferation, whereas the fluorescence ascribed to cross-links of collagen is a structural marker. In this work, we introduce and demonstrate a simple but robust optical method to image the functional process of epithelialization and the exposed dermal collagen in wound healing of human skin in an organ culture model. MATERIALS AND METHODS: Non-closing non-grafted, partial closing non-grafted, and grafted wounds were created in ex vivo human skin and kept in culture. A wide-field UV fluorescence excitation imaging system was used to visualize epithelialization of the exposed dermis and quantitate wound area, closure, and gap. Histology (H&E staining) was also used to evaluate epithelialization. RESULTS: The endogenous fluorescence excitation of cross-links of collagen at 335 nm clearly shows the dermis missing epithelium, while the endogenous fluorescence excitation of tryptophan at 295 nm shows keratinocytes in higher proliferating state. The size of the non-closing wound was 11.4 ± 1.8 mm and remained constant during the observation period, while the partial-close wound reached 65.5 ± 4.9% closure by day 16. Evaluations of wound gaps using fluorescence excitation images and histology images are in agreement. CONCLUSIONS: We have established a fluorescence imaging method for studying epithelialization processes, evaluating keratinocyte proliferation, and quantitating closure during wound healing of skin in an organ culture model: the dermal fluorescence of pepsin-digestible collagen cross-links can be used to quantitate wound size, closure extents, and gaps; and, the epidermal fluorescence ascribed to tryptophan can be used to monitor and quantitate functional states of epithelialization. UV fluorescence excitation imaging has the potential to become a valuable tool for research, diagnostic and educational purposes on evaluating the healing of wounds. Lasers Surg. Med. 48:678-685, 2016. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.


Assuntos
Imagem Óptica/métodos , Reepitelização/fisiologia , Pele/diagnóstico por imagem , Raios Ultravioleta , Biomarcadores/metabolismo , Colágeno/metabolismo , Humanos , Técnicas de Cultura de Órgãos , Pele/lesões , Pele/metabolismo
8.
Lasers Surg Med ; 48(3): 264-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26627306

RESUMO

BACKGROUND AND OBJECTIVE: Skin changes are among the most visible signs of aging. Fractional ablative lasers improve skin quality by making small skin wounds that heal rapidly without scarring. While they improve skin texture and discoloration, there is minimal effect on skin laxity. This study was performed to assess skin shrinkage performed by removing multiple small full-thickness skin columns with coring needles combined with wound closure. MATERIALS AND METHODS: In 5 swine 116 squares (3 cm(2) ) were demarcated for treatment and control sites. In treatment sites 10% of the skin was removed by full-thickness skin coring needles (19 gauge) and afterwards closed and compressed with an elastic adhesive dressing. This procedure was compared to puncturing the skin with standard hypodermic needles (without tissue removal) and subsequent closure with compressive dressing. Area and shape of sites were measured before and 28 days after treatment. RESULTS: Test and control sites healed within a week without scarring. Coring with wound closure caused significant shrinkage after 28 days. The treated skin area was reduced by 9% (P < 0.0001) and the direction of shrinkage was influenced by the direction of wound closure. Coring without wound closure and puncturing the skin without tissue removal produced an insignificant 3% decrease in area. CONCLUSION: Significant minimally invasive skin tightening in a preferred direction can be achieved by removing skin with coring needles followed by wound closure. The direction of shrinkage is influenced by the direction of micro-hole closure, irrespective of the skin tension lines. This approach may allow reshaping the skin in a desired direction without scarring.


Assuntos
Ritidoplastia/métodos , Envelhecimento da Pele , Animais , Feminino , Modelos Animais , Agulhas , Rejuvenescimento , Ritidoplastia/instrumentação , Suínos , Técnicas de Fechamento de Ferimentos , Cicatrização
9.
Expert Opin Drug Deliv ; 12(7): 1059-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25893560

RESUMO

OBJECTIVES: Methotrexate (MTX) is a chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects. This study investigated kinetics and biodistribution of MTX delivered topically by ablative fractional laser (AFXL). METHODS: In vitro passive diffusion of 10 mg/ml MTX (1 w/v%) was measured from 0.25 to 24 h through AFXL-processed and intact porcine skin in Franz Cells (n = 46). A 2,940 nm fractional Erbium Yttrium Aluminium Garnet laser generated mid-dermal microchannels at 2.4% density, and 256 mJ/microchannel. HPLC quantified MTX-concentrations in extracts from mid-dermal skin sections, donor and receiver compartments. Fluorescence microscopy of UVC-activated MTX-fluorescence and desorption electro-spray ionization mass spectrometry imaging (DESI-MSI) evaluated MTX biodistribution. RESULTS: AFXL-processed skin facilitated rapid MTX delivery through cone-shaped microchannels of 690 µm ablation depth, lined by the 47 µm thermal coagulation zone (CZ). Quantitatively, MTX was detectable by HPLC in mid-dermis after 15 min, significantly exceeded deposition in intact skin after 1.5 h, and saturated skin after 7 h at a 10-fold increased MTX-deposition versus intact skin (3.08 vs 0.30 mg/cm(3), p = 0.002). Transdermal permeation was < 1.5% of applied MTX before skin saturation, and increased up to 8.0% after 24 h. Qualitatively, MTX distributed into CZ within 15 min (p = 0.015) and further into surrounding dermal tissue after 1.5 h (p = 0.004). After skin saturation at 7 h, MTX fluorescence intensities in CZ and tissue were similar and DESI-MSI confirmed MTX biodistribution throughout the mid-dermal skin section. CONCLUSIONS: MTX absorbs rapidly into mid-dermis of AFXL-processed skin with minimal transdermal permeation until skin saturation, suggesting a possible alternative to systemic MTX for some skin disorders.


Assuntos
Terapia a Laser , Metotrexato/administração & dosagem , Absorção Cutânea , Pele/metabolismo , Administração Cutânea , Animais , Feminino , Lasers de Estado Sólido , Metotrexato/farmacocinética , Microscopia de Fluorescência , Suínos , Distribuição Tecidual
10.
Virulence ; 2(6): 509-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21971183

RESUMO

The story of prevention and control of infectious diseases remains open and a series of highly virulent pathogens are emerging both in and beyond the hospital setting. Antibiotics were an absolute success story for a previous era. The academic and industrial biomedical communities have now come together to formulate consensus beliefs regarding the pursuit of novel and effective alternative anti-infective countermeasures. Photodynamic therapy was established and remains a successful modality for malignancies but photodynamic inactivation has been transformed recently to an antimicrobial discovery and development platform. The concept of photodynamic inactivation is quite straightforward and requires microbial exposure to visible light energy, typically wavelengths in the visible region, that causes the excitation of photosensitizer molecules (either exogenous or endogenous), which results in the production of singlet oxygen and other reactive oxygen species that react with intracellular components, and consequently produce cell inactivation. It is an area of increasing interest, as research is advancing i) to identify the photochemical and photophysical mechanisms involved in inactivation; ii) to develop potent and clinically compatible photosensitizer; iii) to understand how photoinactivation is affected by key microbial phenotypic elements (multidrug resistance and efflux, virulence and pathogenesis determinants, biofilms); iv) to explore novel delivery platforms inspired by current trends in pharmacology and nanotechnology; and v) to identify photoinactivation applications beyond the clinical setting such as environmental disinfectants.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Doenças Transmissíveis/tratamento farmacológico , Fungos/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Anti-Infecciosos/química , Bactérias/metabolismo , Doenças Transmissíveis/microbiologia , Fungos/metabolismo , Humanos , Luz , Fármacos Fotossensibilizantes/química
12.
Dermatol Online J ; 11(1): 1, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15748542

RESUMO

The cost effectiveness of treatments for psoriasis has been evaluated previously by several different investigators. Such evaluations should be updated as new products or data become available. To this end, a comparison of expected treatment-related clinical and economic outcomes is undertaken from the payer perspective using a disease-intervention model, decision analyses, and newly emergent information. The model is based on academy guidelines and recommended clinical practice. Model inputs (clinical and cost data) are culled from the medical literature and advisory clinical assessment surveys. Comparable therapies are various topical pharmacotherapies and phototherapies, including the 308-nm excimer laser (XTRAC, PhotoMedex, Montgomeryville, PA). Analytic results indicate that clinical and economic outcomes are influenced by treatment selections but are muted by the rotational nature of treatment regimens. Multiple analyses are required to reveal individual product performance. On the basis of these analyses, the addition of the 308-nm excimer laser to the rotational mix of treatments commonly utilized as second-line therapies for mild-to-moderate plaque psoriasis is expected to add incremental clinical benefit for patients without incremental cost for payers, because the laser can replace both more costly and less costly alternatives for appropriately selected patients who require a different therapeutic modality to maintain or improve their responsiveness.


Assuntos
Fármacos Dermatológicos/economia , Custos de Cuidados de Saúde , Terapia a Laser , Modelos Econômicos , Psoríase/terapia , Terapia Ultravioleta/economia , Administração Tópica , Terapia Combinada/economia , Análise Custo-Benefício , Fármacos Dermatológicos/uso terapêutico , Humanos , Guias de Prática Clínica como Assunto , Psoríase/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA